On markov chains with sluggish transients
نویسندگان
چکیده
منابع مشابه
Empirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملOn Triplet Markov Chains
The restoration of a hidden process X from an observed process Y is often performed in the framework of hidden Markov chains (HMC). HMC have been recently generalized to triplet Markov chains (TMC). In the TMC model one introduces a third random chain U and assumes that the triplet T = (X,U, Y ) is a Markov chain (MC). TMC generalize HMC but still enable the development of efficient Bayesian al...
متن کاملOn Markov Chains with Continuous State Space
In this expository paper, we p r o ve the following theorem, which m a y be of some use in studying Markov chain Monte Carlo methods like hit and run, the Metropolis algorithm, or the Gibbs sampler. Suppose a discrete-time Markov c hain is aperiodic, irreducible, and there is a stationary probability distribution. Then from almost all starting points the distribution of the chain at time n conv...
متن کاملParametric LTL on Markov Chains
This paper is concerned with the verification of finite Markov chains against parametrized LTL (pLTL) formulas. In pLTL, the untilmodality is equipped with a bound that contains variables; e.g., ♦6x φ asserts that φ holds within x time steps, where x is a variable on natural numbers. The central problem studied in this paper is to determine the set of parameter valuations V≺p(φ) for which the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Statistics. Stochastic Models
سال: 1997
ISSN: 0882-0287
DOI: 10.1080/15326349708807414